A Markov Chain Model for Predicting Transient Particle Transport in Enclosed Environments

نویسندگان

  • Chun Chen
  • Wei Liu
  • Chao-Hsin Lin
  • Qingyan Chen
چکیده

Obtaining information about particle dispersion in a room is crucial in reducing the risk of infectious disease transmission among occupants. This study developed a Markov chain model for quickly obtaining the information on the basis of a steady-state flow field calculated by computational fluid dynamics. When solving the particle transport equations, the Markov chain model does not require iterations in each time step, and thus it can significantly reduce the computing cost. This study used two sets of experimental data for transient particle transport to validate the model. In general, the trends in the particle concentration distributions predicted by the Markov chain model agreed reasonably well with the experimental data. This investigation also applied the model to the calculation of personto-person particle transport in a ventilated room. The Markov chain model produced similar results to those of the Lagrangian and Eulerian models, while the speed of calculation increased by 8.0 and 6.3 times, respectively, in comparison to the latter two models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting Transient Particle Transport in Enclosed Environments with the Combined CFD and Markov Chain Method

Abstract To quickly obtain information about airborne infectious disease transmission in enclosed environments is critical in reducing the infection risk to the occupants. This study developed a combined Computational Fluid Dynamics (CFD) and Markov chain method for quickly predicting transient particle transport in enclosed environments. The method first calculated a transition probability mat...

متن کامل

Comparing the Markov Chain Model with the Eulerian and Lagrangian Models for Indoor Transient Particle Transport Simulations

Correctly predicting transient particle transport in indoor environments is crucial to improving the design of ventilation systems and reducing the risk of acquiring airborne infectious diseases. Recently, a new model was developed on the basis of Markov chain frame for quickly predicting transient particle transport indoors. To evaluate this Markov chain model, this study compared it with the ...

متن کامل

A Hybrid Model for Investigating Transient Particle Transport in Enclosed Environments

It is important to accurately model person-to-person particle transport in mechanical ventilation spaces to create and maintain a healthy indoor environment. The present study introduces a hybrid DES-Lagrangian and RANS-Eulerian model for simulating transient particle transport in enclosed environments; this hybrid model can ensure the accuracy and reduce the computing cost. Our study estimated...

متن کامل

Advanced Turbulence Models for Predicting Particle Transport in Enclosed Environments

Occupant health is related to particle contaminants in enclosed environments, so it is important to study particle transport in spaces to quantify the rates and routes of potential disease transmission. In many cases, particle contaminants in an enclosed space are generated from an unsteady source. This investigation used the experimental data from two steady-state cases as well as one transien...

متن کامل

Predicting the Air Quality Index of Industrial Areas in an Industrialized City in India Using Adopting Markov Chain Model

Introduction: The rapid urbanization coupled with industrial development in Indian cities has led to air pollution that causes adverse effects on the health of human beings. So, it is crucial to track the quality of air in industrial areas of a city to insulate the public from harmful air pollutants.  The present study examined and predicted air quality index levels in industrial areas located ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015